

Additive Manufacturing for Aerospace

X-ray CT as an Approved Production Inspection

James Willcocks

01 October 2024

This information is provided by Rolls-Royce in good faith based upon the latest information available to it; no warranty or representation is given; no contractual or other binding commitment is implied.

- 1 ALM Inspection in Aerospace
- 2 X-ray CT Challenges for ALM
- 3 TRL Process Overview
- 4 Implementation of TRL Process
- 5 Example of Process Control

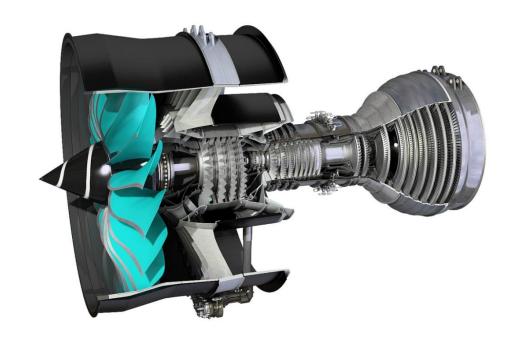


Image: © Rolls-Royce plc

Aero Engine ALM Inspection

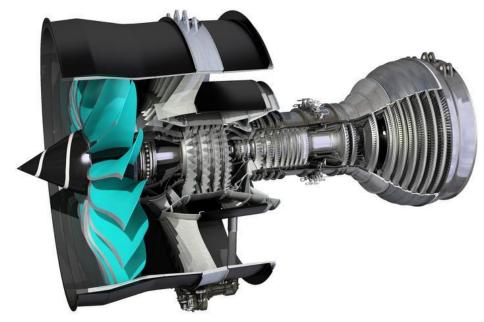
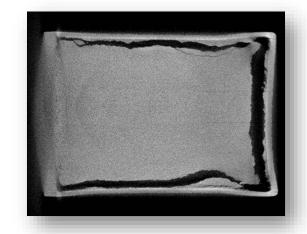
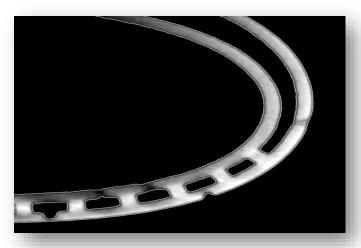


Image: © Rolls-Royce plc

ALM Benefits:

- Increased cooling efficiency
- Part reduction
- Reduce manufacturing steps
- Optimised design


ALM Challenges:


- Part Complexity
- Geometry
- Access (Physical / Line of Sight)
- Surface finish.

Aero Engine ALM Inspection

- CT can provide dimensional interrogation of internal features:
 - Cooling holes
 - Wall Section Thickness

- Verification of additive build processes.
- Evaluation of material integrity:
 - Voids / Porosity
 - Cracks
 - Layer Defects
 - Trapped Powder

X-ray CT Challenges for ALM

Image : © Rolls-Royce plc

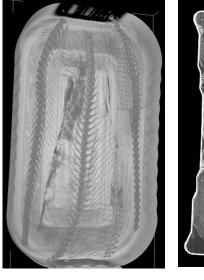

Film x-ray

Image: © Rolls-Royce plc

Digital x-ray

Image : © Rolls-Royce plc

X-ray CT

X-ray CT Challenges for ALM

Image: © Rolls-Royce plc

Film x-ray

Image: © Rolls-Royce plc

Digital x-ray

Image: © Rolls-Royce plc

X-ray CT

How to make this Transition?

Technology Readiness Levels (TRL)

Implementation	TRL9. Actual system proven through successful mission operations.
Pre-production	TRL8 Actual system completed and qualified through test and demonstration
	TRL7 System prototype demonstration in an operational environment
Process understanding (application specific)	TRL6 System/subsystem model or prototype demonstration in a relevant environment
	TRL5 Component and/or partial system validation in a relevant environment
	TRL4 Component and/or partial system validation in a laboratory environment
Technology assessment	TRL3 Analytical and experimental critical function and/or characteristic proof of concept
	TRL2 Technology concept and/or application formulated
	TRL1 Basic principles observed and reported

Technology Readiness Levels (TRL)

Production Implementation	TRL9. Actual system proven through successful mission operations.
Personnel approval Equipment and Process optimisation for cost and rate	TRL8 Actual system completed and qualified through test and demonstration
	TRL7 System prototype demonstration in an operational environment
Control checks Technical risks Draft procedure Training requirements Equipment	TRL6 System/subsystem model or prototype demonstration in a relevant environment
	TRL5 Component and/or partial system validation in a relevant environment
Fundamental understanding Proof of concept	TRL4 Component and/or partial system validation in a laboratory environment
	TRL3 Analytical and experimental critical function and/or characteristic proof of concept
	TRL2 Technology concept and/or application formulated
	TRL1 Basic principles observed and reported

Fundamental understanding for X-ray CT (TRL 4)

- Many years of research and development:
 - Universities
 - Research Centres
 - Suppliers
- All factors which influence the inspection are understood for example:
- Defect orientation

- Magnification / field of view
- X-ray Penetrating Power
- Component Orientation

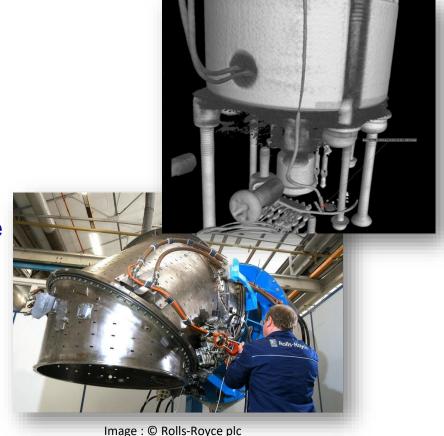
- X-ray Source

Part geometry

Detector Resolution

- Manipulator
- Number of Projections

Image: © University of Southampton



How to achieve a repeatable X-ray CT process (TRL 6)

Image : © Rolls-Royce plc

- Detailed Process understanding established
 - Risk review
 - PFMEA Completed

- Control plan / NDE procedure in Place
 - Equipment requirements
 - Training requirements
 - System Control / Performance Checks

Implementation of X-ray CT Technology (TRL8)

- Fundamental Process Understanding
- Approved personnel
- Equipment specification
- Formal Technique Instruction
- Training and experience requirements
- Control checks
- Calibration standards

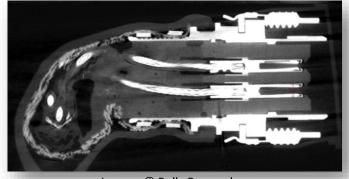


Image: © Rolls-Royce plc

Image: © Rolls-Royce plc

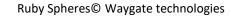
Implementation of X-ray CT Technology (TRL8)

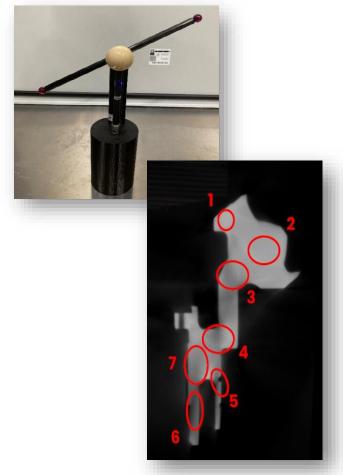
- Fundamental Process Understanding
- Approved personnel
- Equipment specification
- Formal Technique Instruction
- Training and experience requirements
- Control checks
- Calibration standards

These factors are the blockers for X-ray CT for NDE.

X-ray CT Process Control checks

- Does the data have sufficient signal to Noise.
- Does the data have sufficient Contrast.
- Is the Detector is Working Correctly.
- Is the X-ray focal spot size correct.
- Have the manipulator axis been calibrated.
- Has capability been demonstrated on a representative RQI.

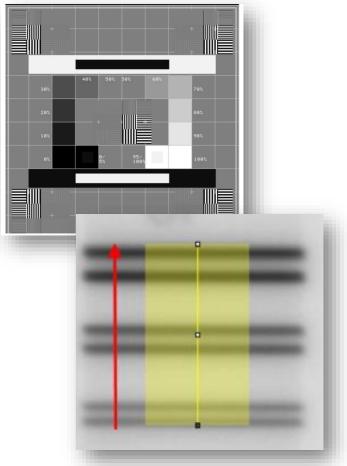

Image : © Rolls-Royce plc



5 - Inspection Process Control

 X-ray CT inspection can be controlled using the following system process checks:

System Process Control Check	Frequency
MTF and CNR	Daily
Geometric Magnification (Ruby Spheres)	Daily
Representative Quality Indicator (RQI)	Daily
Detector Gain and Offset	Daily
Detector Bad Pixel Mapping	Weekly
Focal Spot	Monthly
Detector Resolution	Monthly



5 - Inspection Process Control

 X-ray CT data interpretation may be controlled using the following process checks:

Viewing Process Control Checks	Frequency
Eye Adaption Time	per inspection
Ambient Light Levels	Daily
Monitor Performance (SMTPE Pattern)	Daily
Monitor Brightness / Contrast	Monthly

Process Controls © Waygate technologies

Questions?